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ABSTRACT
Graph summarization is the task of finding condensed represen-

tations of graphs such that a chosen set of (structural) subgraph

features in the graph summary are equivalent to the input graph.

Existing graph summarization algorithms are tailored to specific

graph summary models, only support one-time batch computation,

are designed and implemented for a specific task, or evaluated using

static graphs. Our novel, incremental, parallel algorithm addresses

all these shortcomings. We support various structural graph sum-

mary models defined in our formal language FLUID. All graph sum-

maries defined with FLUID can be updated in time O(∆ ·dk ), where
∆ is the number of additions, deletions, and modifications to the in-

put graph, d is its maximum degree, and k is the maximum distance

in the subgraphs considered. We empirically evaluate the perfor-

mance of our algorithm on benchmark and real-world datasets. Our

experiments show that, for commonly used summary models and

datasets, the incremental summarization algorithm almost always

outperforms their batch counterpart, even when about 50% of the

graph database changes. The source code and the experimental

results are openly available for reproducibility and extensibility.
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1 INTRODUCTION
Structural graph summaries are condensed representations of graphs

such that a set of chosen (structural) features of the graph summary

are equivalent to the original graph. To achieve this, structural

graph summaries partition vertices based on the equivalence of

subgraphs. To determine subgraph equivalences, only structural

features are used, such as specific labels and data types. Structural

graph summaries are usually an order of magnitude smaller than

the input graph but are equivalent to the original graph regarding

the chosen (structural) features [5, 7].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3411878

Figure 1: Evolving graph database (GDB) and part of its
graph summary (SG) that uses the SchemEX model [18].

Illustrative example: The graph database (GDB) at time t shown
in the top-left of Fig. 1 contains two graphsG1 andG2. Both graphs

contain vertices labeled Book, Subject, and Person and edges la-

beled topic and author. One can define a graph summary (SG) using

an equivalence relation ∼ that summarizes vertices in the GDB that

have the same label and are connected to vertices with the same

label by edges with the same label. If two equivalent (sub)graphs are

found, the redundant information is removed, giving a condensed

representation in SG. This graph summary SG is shown in the top

right of Fig. 1. It preserves the information about the combinations

of graph label (Book−topic→Subject and Book−author→Person)
found in the GDB at time t . Note that the GDB can, in principle,

be distributed, e. g., on the Web where G1 and G2 would be hosted

on different Web servers. In Fig. 1, this is indicated by labeling the

graphs with two source URIs, “X” for G1 and “Y” for G2. Structural
graph summaries are often an order of magnitude smaller than the

input graph [7]. As graph summaries share the structural features

observed in the input graph, they often serve as indices to search

for equivalent subgraphs [7, 11]. In the example above, the graph

summary can answer data search questions like: “Where can one

find graphs on the Web with vertices of type Book that are con-

nected to vertices with the type Person by an edge labeled author?”
or “How many vertices have outgoing edges labeled title, author,
and abstract?”. Other applications of structural graph summaries

include cardinality computations for queries on graphs [21], data

exploration [1, 20, 22, 25], data visualization [10], vocabulary term

recommendations [24], and related entity retrieval [8]. Next, we

describe the tasks of data search and cardinality computation. We

use these tasks to motivate the need for incremental computation

of structural graph summaries.
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The task of data search is to find (sub)graphs on the Web that

match a given schema structure [11]. First, a structural graph sum-

mary is queried to identify relevant data sources matching this

query. Then, the data source URIs are accessed to download the

graphs matching the query. To implement data search, structural

graph summaries need to memorize schema structure and loca-

tion of vertices on the Web. As the data on the Web changes [15],

the summaries need to be updated as well. The task of cardinality

computation is to calculate how many (sub)graphs match a given

schema structure. This enables, e. g., query size estimation [21] or

assessment of completeness in knowledge bases [23]. To imple-

ment this task, one needs to memorize the number of summarized

vertices for each schema structure. As the GDB changes, also the

numbers in the summary need to be updated.

When the input graph changes, it is often prohibitively expensive

to recompute the structural graph summary from scratch. Thus, an

update algorithm is needed. Our novel incremental algorithm to

compute structural graph summaries automatically detects changes

in the data graph. This, however, takes time linear in the size of

the input graph. Furthermore, our algorithm is designed to allow

parallel execution in a distributed system architecture. We achieve

this by following the idea of Tarjan’s two-phase algorithm for the

set union problem [27] and implementing the make-set phase fol-

lowing the signal and collect programming model [26]. Moreover,

in contrast to existing solutions, our algorithm is not designed for

a specific graph summary model, but can handle arbitrary mod-

els defined in our formal language FLUID [4]. In summary, our

contributions are as follows:

• A parallel algorithm to incrementally compute and update

structural graph summaries defined as equivalence relations

following our formal language.

• Detailed theoretical complexity analysis of our incremental

algorithm showing that all graph summaries defined in the

formal language can be updated in time O(∆ · dk ).
• Empirical analyses on benchmark and real-world datasets

show that our incremental algorithm outperforms a batch

computation even when about 50% of the graph changes.

The paper is structured as follows. Next, we discuss relatedworks.

In Sect. 3, we define graph databases, graph summary models, and

our data structure for graph summaries as well as its data com-

plexity. In Sect. 4, we present the parallel summarization algorithm

and discuss its computational complexity. In Sect. 5, we present the

extension to incrementally update graph summaries and analyze

the update complexity. In Sect. 6, we describe the experimental

apparatus. Finally, we present and discuss the experimental results.

2 RELATEDWORK
Structural graph summaries partition a graph based on features

of vertices or edges. There are a variety of structural graph sum-

mary models in the literature, which capture different structural

features such as edge labels [6], vertex labels [6], incoming vs.

outgoing edges [21], combinations of such features for different

subgraphs [10, 18], and others. A detailed survey is provided by

Čebiric et al. [7]. Of particular interest are the works by Goasdoué

et al. [10] and Konrath et al. [18] who compute graph summaries of

a stream of vertex-edge-vertex triples, i. e., they can deal with the

addition of new vertices and edges to the graph. However, neither

approach deals with the deletion of vertices or edges or the mod-

ification of their labels. Thus, they cannot update the structural

summaries of evolving graphs. Existing structural graph summaries

have in common that they are designed only for a single purpose

and cannot be easily adapted and extended to different tasks.

Besides structural graph summaries that abstract from a graph

based on common vertex or edge features, there are also general

purpose graph database indices. Commonly, graph databases use

path indices, tree indices, and subgraph indices [13]. We focus on

incremental subgraph indices as they most closely relate to struc-

tural graph summaries. Yuan et al. [29] propose an index based

on mining frequent and discriminative features in subgraphs. The

algorithmminimizes the number of index lookups for a given query.

It regroups subgraphs based on newly added features. The runtime

performance was improved by the same authors in 2015 [30] and by

Kansal and Spezzano in 2017 [16]. However, mining frequent fea-

tures in subgraphs only optimizes the index for lookup operations

for commonly used queries. It does not compute a comprehensive

graph summary along specified structural features. The algorithm

of Fan et al. [9] can deal with graph changes for the subgraph iso-

morphism problem. Their incremental computation of an index for

isomorphic subgraphs is closely related to structural graph summa-

rization, but it differs in that the graph pattern p is an input to the

algorithm, not the output. The goal of structural graph summariza-

tion is to compute, based on a summary model that specifies the

features, the set of common graph patterns that occur in a graph.

Another area related to our work is incremental schema discov-

ery from large datasets in NoSQL databases. For example, XStruct [14]

follows a heuristic approach to incrementally extract the XML

schema of XML documents. However, such schema discovery ap-

proaches cannot deal with modifications or deletions of nodes in

the XML tree. Other schema discovery approaches focus on gen-

erating (probabilistic) dataset descriptions. Kellou-Menouer and

Kedad [17] apply density-based hierarchical clustering on vertex

and edge labels in a graph database. This computes profiles that

can be used to visualize the schema of the graph. The term “incre-

mental” for the related schema discovery algorithms refers in their

work to the concept of incrementally processing large documents,

not considering modifications and deletions. Thus, they are not

designed to update the discovered schema for evolving graphs.

In conclusion, existing algorithms are either not designed for

evolving graphs but support structural graph summaries, or are

incremental algorithms for graph database indices but not designed

to support structural summaries. They are designed for a single

task only, and the provided solution cannot be easily adapted or

extended to other graph summary models or tasks.

3 FOUNDATIONS
We define graph databases, how to model structural graph sum-

maries, and our data structure for structural graph summaries.

3.1 Graph Databases
We define a graph database as multiset of labeled property graphs

with shared vertices and edges. Multisets of graphs allow data

replication. This is important when graph databases are distributed



without centralized management such as in the Web of Data, where

graphs are stored and maintained on nodes controlled by various

parties. To deal with such decentralized storage, graphs contain

data provenance information, i. e., their location on the Web.

Formally, we define a graph database GDB = (V , E,G), where
V is a set of vertices, E ⊆ V × V is the set of edges, and G =

{G1, . . . ,Gn } is a multiset of graphs. Each graph G ∈ G is a tu-

ple: G = (VG , EG ) with VG ⊆ V and EG ⊆ E. The sets V , E are

not multisets, i. e., all vertices and edges are uniquely identified

within the GDB, e. g., by URIs on the Web. The graphs G ∈ G are

not necessarily connected, i. e., they may contain multiple disjoint

components. Two graphs Gi and G j with i , j can have common

vertices, i. e., it is possible that VGi ∩VG j , ∅.
We define two labeling functions for our structural graph sum-

maries. The first function ℓV : V → P(ΣV ) maps each vertex to

zero or more labels from the finite alphabet ΣV (also referred to

as types). The second function ℓE : E → P(ΣE ) maps each edge to

zero or more labels from the finite alphabet ΣE (also referred to

as properties). In addition, we assume that each instance of each

graph G ∈ G is labeled with a source label, e. g., the URI of the

document containing G, serving as provenance information.

We assume that edges are directed, i. e., (v,w) , (w,v) for all
distinct v,w ∈ V . We can represent the undirected edge vw by

the pair of directed edges (v,w) and (w,v). In a directed graph, we

might have edges (v,w) and (w,v) and, in this case, we might have

ℓE (v,w) , ℓE (w,v). However, in an undirected graph (where all

edges are undirected), we will always have ℓE (v,w) = ℓE (w,v).
Furthermore, we write Γ(v) = {w | (v,w) ∈ E} for the set of

neighbors of v in the graph database GDB.

3.2 Structural Graph Summary Models
A structural graph summary is a condensed representation of a

graph such that a set of chosen (structural) features are equivalent in

the graph summary and the original graph [7]. For example, vertices

in graph database (GDB) might be summarized if they share the

same label. How the graph is summarized can be expressed and

formally defined as an equivalence relation. We call this definition

the graph summary model. The graph summary of a GDB is

computed following a specific graph summary model and can be

used to implement a variety of tasks as described in the introduction.

For different tasks, different features of the summarized vertices

are of interest, e. g., the number of summarized vertices (cardinality

computation) or the source labels (data search). This information

about the summarized vertices is called the payload.
Graph Summary Model: Any equivalence relation over the ver-

tices V of a graph G defines a partition of G, e. g., two vertices are

equivalent under ∼ if they have the same labels (types). In this

case, for any v ∈ V , the equivalence class [v]∼ contains only ver-

tices with the same label as v . Existing graph summaries often

define equivalence relations over vertices using combinations of

vertex labels (types) and edge labels (properties) [4]. We call these

combinations of types and properties the schema structure of

vertices. Such schema structures can be flexibly defined in our for-

mal language FLUID using three simple and one complex schema
elements along with conjunction, disjunction and a set of parame-

terizations [4]. We now summarize the relevant concepts of FLUID.

The three Simple Schema Elements (SSEs) summarize ver-

tices v using only ℓV (v), ℓE (v,w), and/or vertex identifiersw with

w ∈ Γ(v). Object Cluster (OC) compares vertex identifiers of

all neighboring vertices: two vertices v and v ′ are equivalent iff
Γ(v) = Γ(v ′) (and vice versa). Property Cluster (PC) compares

edge labels: v and v ′ are equivalent iff, for all outgoing edge labels

(properties) ℓE (v,w) there is an identical property ℓE (v
′,w ′) for

v ′ (and vice versa). Property-Object Cluster (POC) combines PC

and OC: v and v ′ are equivalent iff, for all neighbors w ∈ Γ(v)
there is a neighbor w ′ ∈ Γ(v ′) with the same vertex identifier,

and with ℓE (v,w) = ℓE (v
′,w ′) (and vice versa). SSEs are called

“simple” because equivalence of vertices can be computed just by

comparing the vertices and their outgoing edges. In contrast, Com-
plex Schema Elements (CSEs) use information beyond this local

schema structure. CSEs are defined using a tuple of three equiv-

alence relations, i. e., CSE := (∼s , ∼p , ∼o ). ∼s defines the local

schema structure of the vertex v . ∼o defines the local schema struc-

ture of neighbors w ∈ Γ(v). Intuitively, ∼p defines how the local

schema structures of v andw are connected.

Parameterizations further specify the simple and complex

schema elements. The chaining parameterization has a parame-

ter k that limits the maximum distance of the considered subgraphs

for CSEs to k and is denoted as CSEk . For example, CSE2 is equiv-
alent to a nested complex schema element, i. e., CSE := (∼s , ∼p

, (∼s , ∼p , ∼o )). The label parameterization restricts the edges con-

sidered for the summaries to edges with labels defined in a given

set Pl . Intuitively, all edges with labels not in Pl do not change the

summarization. This can, for example, be used to consider types in

RDF graphs, since they are represented as vertex identifiers and at-

tached to vertices with edges labeled rdf:type. As using the types
of vertices (i. e., vertex label in our GDB definition) is a commonly

used feature, we denote the OC with the label parameterization

Pl = {rdf:type} as OCtype. The set parameterization has as pa-

rameter a set of labels or vertex identifiers S . It forces, in addition

to the equivalence of vertex and/or edge label, that all labels are

also contained in S . The direction parameterization allows to con-

sider only outgoing edges, incoming edges, or both. The inference

parameterization enables ontology reasoning using a vocabulary

graph. The vocabulary graph stores all hierarchical dependencies

between vertex labels (types) and edge labels (properties) denoted

by ontologies present in the graph database. The instance parame-

terization allows vertices to be merged when they are labeled as

equivalent, e. g., vertices linked with owl:sameAs.

3.3 Data Structure of Graph Summaries
Let GDB = (V , E,G) be a graph database with label functions ℓV
and ℓE , and let ∼ be an equivalence relation over V . The graph
summary for GDB with respect to ∼ is a labeled graph SG =
(Vvs∪Vpe, Evs∪Epe), where Evs ⊆ Vvs×Vvs and Epe ⊆ Vvs×Vpe. Here,
the subscript “vs” denotes “vertex summary”. The subgraph VS =
(Vvs, Evs) contains the schema information about the GDB according

to the model used for ∼, as introduced in Sect. 3.2. Thus, the vertices

Vvs and edges Evs are those shown in the graph summary SG in

Fig. 1. The subscript “pe” denotes “payload elements”. The graph

PG = (Vvs∪Vpe, Epe) connects the schema to the payload, i. e., each

edge (v,w) ∈ Epe connects a vertex v in VS to a vertex w (the



payload element) that contains v’s payload information. The SG is

the union of the vertex summaries VS and their payload PG.
Each vertex in Vvs has as its identifier a pair (C,R), where R is

an equivalence relation over V , the vertices of the GDB being sum-

marized, and C is one of R’s equivalence classes. The edges in Evs
correspond to the edges in the GDB through which the equivalence

relations are defined. We further divide Vvs into primary vertices,

which are equivalence classes of ∼, and secondary vertices, which

are equivalence classes of the relations from which ∼ is defined.

For each v ∈ V (of the GDB) and equivalence relation ∼ (defined

by simple or complex schema elements), we define the local sum-

mary graph vs∼(v) by induction on the structure of the schema

elements. This local summary graph is computed for each v ∈ V
and is called the vertex summary.

To serve as base-cases for the inductive definition of vertex sum-

maries, we define equivalence relations id = {(v,v) | v ∈ V } and
T = V × V . For any vertex v ∈ V , vs

id
(v) is the graph with the

single vertex ({v}, id), which is the primary vertex, and no edges;

similarly,vsT (v) has the single (primary) vertex (V ,T ) and no edges.
Note that vsT (v) is identical for every v ∈ V , i. e., all vertices are
summarized by the same vertex summary, but vs

id
(v) is distinct for

every v ∈ V , i. e., each vertex summary summarizes one vertex.

For the inductive step, we define the vertex summaries for CSEs.

This implicitly includes SSEs since, although SSEs are implemented

separately for efficiency, the SSEs OC, PC and POC are equivalent

to the CSEs (T ,T , id), (T , id,T ) and (T , id, id), respectively. So, let
∼ be the equivalence relation defined by the CSE (s̃, p̃, õ) and let

v ∈ V . Let Γo = {[w]õ | w ∈ Γ(v)} be the set of õ-equivalence
classes of v’s neighbors. The primary vertex of vs∼(v) is ([v]s̃ , s̃).
For each equivalence class C ∈ Γo , vs∼(v) has a subgraph vsõ (wC ),

where wC is an arbitrary vertex in C . Now, let B
p
C = {[(v,w)]p̃ |

(v,w) ∈ E andw ∈ C}; i. e., if v has neighbors in õ-class C , then

B
p
C is the set of p̃-equivalence classes of the edges linking v with

a vertex w ∈ C . For each class β ∈ B
p
C , vs∼(v) contains an edge

labeled β from its primary vertex to the primary vertex of vsõ (wC ).

Theorem 3.1. Let GDB = (V , E,G) be a graph database with

maximum degree at most d > 1, and let ∼ be an equivalence relation

onV defined by nesting CSEs to depth k . For every v ∈ V , vs∼(v) is a

tree (possibly with parallel edges) with O(dk ) vertices.

Proof. Thatvs∼(v) is a tree follows from the definition: the base

cases are one-vertex trees and the inductive steps cannot create

cycles. Any vertex in V has at most d neighbors, so is adjacent

to at most d equivalence classes. Therefore, no vertex in vs∼(v)
has degree more than d . vs∼(v) has depth k , so it contains at most∑k
i=0 d

i = O(dk ) vertices. □

In principle, a single vertex summary in a graph summary may

be bigger than original GDB. However, this requires the use of

highly nested CSEs on small GDBs, which is unlikely in practice.

4 PARALLEL GRAPH SUMMARIZATION
Our algorithm to compute graph summaries can be executed in

parallel and in a distributed system architecture. In the subsequent

section, we introduce the extension to this algorithm that allows

incremental updates of computed graph summaries.

4.1 Outline of the Parallel Algorithm
Our algorithm is inspired by the two-phase approach of Tarjan’s

algorithm for the set union problem [27]. Phase 1 (schema computa-

tion): Compute for each vertexv the corresponding vertex summary

vs . This corresponds to the make-set operation and generates a ver-

tex summary vs for each vertex. Phase 2 (find and merge): Find the

vertex summaries that have the same schema structure and merge

them. This refers to the find-set operation in Tarjan’s algorithm.

When all vertex summaries with the same schema structure are

found andmerged, we successfully partitioned the vertices of a GDB

into disjoint subsets. One fundamental idea of our algorithm is that

to achieve high parallelism, we can partition the graph database for

the computation process in such a way that all vertices with their

label set and their (outgoing) edges including their label are in a

single partition Thus, the equivalence defined by simple schema

elements (SSEs) can be computed for each vertex independently.

4.2 Parallel Algorithm
We support the parallel computation of all graph summary models

defined in Sect. 3.2. This is achieved by using a parameterized

implementation of the simple and complex schema elements. The

pseudo code of the summarization algorithm is presented in Alg. 1.

In Line 3, the extraction of the schema for each vertexv in the graph

database begins. In parallel, for each v , the local vertex schemata

are extracted as defined by the simple schema elements of the graph

summary model provided as input. This simple schema extraction is

applied using both the ∼s and ∼o equivalence relations (see Lines 4

and 5) of the graph summary model.

The locally computed vertex schema is exchanged between the

vertices to construct the complex schema information (as defined

by the graph summary model). We use the common technique of

signal and collect [26]. In Line 6, each vertex v receives as signals

the schema (according to the object equivalence relation ∼o ) of all

its neighbors. Likewise, Line 8, collects neighbors’ schemas and

constructs the data structure defined in Sect. 3.3. When we use the

k-chaining parameterization, this step of sending and aggregating

information is done k times (Lines 11 to 13) and a vertex accesses

the schema information from vertices up to distance k . Line 14 ex-
tracts the payload information from the vertex v . Example payload

functions are counting the number of vertices (increasing a counter)

or memorizing the source label of v . The final vertex summary vs
and payload element pe are stored in a centralized managed data

structure (Line 15), e. g., a graph database, where the find and merge

phase is implemented. When the same vertex summary vs is com-

puted for multiple vertices, it is only stored once and the payload

elements are merged, e. g., the number of summarized vertices is

increased or the corresponding source labels are added.

The direction parameterization only changes how the graph

is traversed but not the algorithm itself, so it is not shown. The

label and set parameterizations are omitted here since they require

only a lookup in the corresponding parameter set. The instance

parameterization is a pre-processing step, i. e., all vertices connected

by an edge with a specific label, e. g., owl:sameAs, are merged.

Following Liebig et al. [19], the inference parameterization is a post-

processing step, since inference on a single vertex summary vs is
equivalent to inference on all summarized subgraphs.



Algorithm 1: Parameterized Graph Summarization

1 function ParallelSummarize(GDB, SG, (∼s ,∼p ,∼o )k )
2 returns graph summary SG

3 forall v ∈ V do in parallel
4 vs ← ExtractSimpleVertexSchema(v, E,∼s );

5 tmp ← ExtractSimpleVertexSchema(v, E,∼o );

/* signal information relevant for ∼o to

incoming neighbors */

6 forallw ∈ V : (w,v) ∈ E do
7 w .Inbox← (tmp, 1);

/* collect information of neighbors and

construct complex vertex summaries */

8 forall (tmp_vs ′, r ) ∈ v .Inbox do
9 t ← ExtractSimpleEdgeSchema((v,w),∼p );

10 vs .Neighborw ← (t, tmp_vs ′);

/* k-chaining repeats signal and

collect k-times */

11 if r < k then
12 forallw ∈ V : (w,v) ∈ E do
13 w .Inbox← (vs , r + 1);

14 pe ← ExtractPayload(v);

15 SG ← FindAndMerge(SG,vs,pe,v);

16 return SG;

4.3 Complexity of Parallel Summarization
Since our algorithm is inspired by the two-phase approach of Tar-

jan’s algorithm for the set union problem [27], we briefly review its

complexity. Phase 1 partitions the set of n vertices using n make-set

operations and phase 2 uses some number m ≤ n of find opera-

tions. For this problem, the worst-case complexity is proven to be

O(n +m · α(m + n,n)), where α is the functional inverse of Acker-

mann’s function [27]. It is generally accepted that in practice α ≤ 4

holds true [27]. Thus, the summary computation can be done in

essentially linear time. A detailed discussion on the impact of the

different parameterizations can be found in [4]. It concludes that

only the chaining parameterization and inference parameterization

have an impact on the worst case complexity, where the infer-

ence parameterization applied on the graph database produced a

worst-case complexity of O(n2). Since we implement the inference

parameterization as a post-processing step, this has no impact on

Alg. 1. We consider chaining parameterization in detail in Sect. 5.3.

Typical payload functions extract information from a single ver-

tex, e. g., counting or storing the source of a data graph [7]. These

functions run in time O(1) since only a single vertex is needed to

extract the payload. When we find and merge the schema elements,

the payload is merged in time O(1) as well.

5 INCREMENTAL GRAPH SUMMARIZATION
The parallel graph summarization algorithm presented above can be

used for batch computation of graph summaries. In this section, we

extend this algorithm to allow incremental updates on a non-empty

graph summary SG given as input to the algorithm.

5.1 Outline of the Incremental Algorithm
For the incremental algorithm, we adapt the FindAndMerge phase.

In the batch algorithm, all vertex summariesvs are computed, found,

and merged. In the incremental algorithm, only vertex summaries

of vertices with changed information are found and merged. This

avoids unnecessary and costly operations. However, if there is

no change log available, for each vertex v in the graph database

the make-set operation needs to be executed, i. e., the new vertex

summary vs needs to be extracted. When a change log is provided,

vertex summaries only for changed vertices need to be extracted.

There are six changes in a graph database that could require up-

dates in a structural graph summary: a new vertex is observed with

a new schema (ADD-SG), a new vertex is observed with a known

schema (ADD-PE), a known vertex is observed with a changed

schema (MOD-SG), a known vertex is observed with changed

“payload-relevant information” (MOD-PE), a vertex with its schema

and payload information no longer exist (DEL-PE), and no more

vertices with a specific schema structure exist (DEL-SG).

To check if vertices have changed, we use an additional data

structure called VertexUpdateHashIndex. This allows us to trace

links between vertices v in the graph database, vertex summaries

vs in the graph summary, and payload elements pe in the graph

summary. Intuitively, in the find and merge phase, we look in the

VertexUpdateHashIndex to see if the vertex summary and payload

element for a vertex contain information that requires an update

to the graph summary. If no update is required, we can skip the

vertex. When accessing the VertexUpdateHashIndex is faster than

actually finding and merging vertex summaries, we decrease the

computation time. We implement the VertexUpdateHashIndex as

a three-layered unique hash index with cross-links between the

layers. Since only hashes and cross-links are stored, updates on

the secondary data structure are faster than updates on the graph

summary. The unique hash indices ensure that there is at most one

entry for all referenced vertices in each layer.

5.2 Incremental Algorithm
The incremental graph summarization algorithm contains two ex-

tensions to the parallel graph summarization algorithm, Alg. 1.

First, we replace the FindAndMerge function with an incremental

version called IncrementalFindAndMerge, which is shown in

Alg. 2. This handles additions and modifications. Second, we add a

loop to handle deletions from the graph database.

Figure 2: The VertexUpdateHashIndex is a three-layered
data structure. L1 is a unique hash index for the vertex sum-
maries vs, L2 is a unique hash index for vertices v, and L3 is
a unique hash index for payload vertices pe.



Algorithm 2: Incremental FindAndMerge Algorithm.

1 function IncrementalFindAndMerge(SG,vs,pe,v)
2 returns updated graph summary SG

3 if VertexHashIndex.ContainsLink(v) then
4 idprev ← VertexHashIndex.GetLink(v);

5 vsprev ← SG.GetElement(idprev);

6 if vsprev , vs then
7 VertexHashIndex.RemoveLink(v);

8 if |VertexHashIndex.GetLinks(vsprev)| ≤ 0

then
9 SG.RemoveElement(vsprev);

10 if not VertexHashIndex.ContainsLink(v) then
11 VertexHashIndex.AddLink(v , Hash(vs));

12 if SG.ContainsElement(vs) then
13 SG.UpdatePayload(vs , pe);

14 else
15 SG.AddElement(vs,pe);

16 return SG;

Line 3 of Alg. 2 checks if the vertex v is already in the Vertex-

UpdateHashIndex. If it is, we retrieve its existing vertex summary

vsprev (Lines 4 and 5). If the current vertex summaryvs differs from
vsprev, then v’s schema has changed (MOD-SG) so we delete the

link between v and vsprev in the VertexUpdateHashIndex (Line 7).

If this was the last link forvsprev, thenvsprev no longer summarizes

any vertex and it is deleted from SG in Line 9 (DEL-SG). At this

point (Line 10), there are two reasons that v might not be in the

VertexUpdateHashIndex: it could be a new vertex that was not in

the previous version of the GDB (ADD-PE or ADD-SG) or it could

be a vertex whose schema has changed since the previous version

and we deleted it at Line 7 (MOD-SG). In any case, we add a link

from v to its new summary vs at Line 11. After the VertexUpdate-
HashIndex is updated, we update the graph summary SG. If vs is
already in SG, we update the payload element pe of vs in Line 13

(ADD-PE). Thus, we found and merged a vertex summary. If vs
does not yet exist in SG , we add the vertex summaryvs to the graph
summary SG (ADD-SG).

After completing phases 1 and 2 of our incremental graph sum-

marization algorithm, we handle deletions (DEL-PE). All vertices

that are no longer in the GDB are deleted from the VertexUpdate-

HashIndex. Analogously to the deletion described above, deleting

entries in the VertexUpdateHashIndex can trigger a deletion of a

vertex summary vs in the graph summary SG (DEL-SG).

Proof of correctness (sketch): To prove that the incremental algo-

rithm is correct, we need to show that the batch algorithm applied

on the graph database at time t + 1 (GDBt+1) returns the same

graph summary SG as the incremental algorithm first applied on

GDBt and then applied on GDBt+1. We denote by ∅ the empty

(summary) graph, by SG
batch

the result of the batch computation

ParallelSummarize(GDBt+1, ∅,∼), and by SGincr the result of the

incremental computation ParallelSummarize(GDBt+1, Parallel-
Summarize(GDBt , ∅,∼),∼). It can be shown by induction for all

t ∈ N that SG
batch

⊆ SGincr and SGincr ⊆ SG
batch

, with ⊆ denoting

the subgraph relation. The full proof is available online [3].

5.3 Complexity of Incremental Summarization
In the following, we analyze the update complexity of all possi-

ble changes in the data graph w.r.t. the number of operations on

the vertex summary, i. e., adding and/or removing vertices and/or

edges. We first discuss ADD-SG, MOD-SG, and DEL-SG as they

require an update on the vertex summary and possible cascading

updates on other vertex summaries. Then, we discuss updates on

the VertexUpdateHashIndex, which are common to all six changes.

Finally, we briefly discuss payload changes.

Graph Summary Updates: Observed vertices with a new schema

(ADD-SG) require at least 1 and at most dk + 1 new vertices to be

added to SG . As discussed in Sect. 3.3, reusing vertices and edges in

the graph summary reduces the number of add operations. However,

since it is a new vertex summary, at least one new vertex needs to be

added, i. e., the primary vertex. Furthermore, up to dk edges are to

be added to SG , in the same way. Deleting all verticesv summarized

by a vertex summary vs (DEL-SG) also requires deleting vs from
SG. DEL-SG is the counterpart to ADD-SG, i. e., we have to revert

all operations. Thus, DEL-SG has the same complexity as ADD-SG.

When we observe a vertex v with vertex summary vs ′ at time t ,
but already summarized v with a different vertex summary vs at
time t −1, we have to modify the graph summary SG. Transforming

a vertex summary vs to another vertex summary vs ′ means in

the worst case deleting all vertices and edges in vs and adding all

vertices and edges in vs ′. This occurs when the schema of v has

entirely changed from t − 1 to t . Thus, modifications to vs ′ are in

the worst case dk + 1 added vertices, dk added edges, dk + 1 deleted

vertices, dk deleted edges. In the best case, vs ′ already exists in SG
and no updates to the graph summary are needed.

Cascading Updates: When complex schema elements are used,

updates on the vertex summary vs of a vertex v can require an

update on the vertex summaries of any neighboring vertex w , if

v ∈ Γ(w). Thus, for each incoming edge to v , up to d− vertices

need an update. Complex schema elements (CSE) correspond to a

chaining-parameterization (bisimulation) of k = 1. For arbitrary

k ∈ N, updating one vertex summary vs requires up to d−k ad-

ditional updates. Therefore, the complexity of ADD-SG, DEL-SG,

and MOD-SG is O(dk ) for a single vertex update. Since k is fixed

before computing the index, the only variable factor depending on

the data is the maximum degree d of the vertices in the GDB.

VertexUpdateHashIndex Updates: All six changes require an up-

date on the VertexUpdateHashIndex. Summary models defined us-

ing equivalence relations partition vertices of the GDB into disjoint

subsets, i. e., the vertex summaries (see Sect. 3.2). Thus, there are as

many vertex summaries vs in SG that may need to be updated as

there are partitions in the GDB. For each [v]∼, there is exactly one

entry hash(vs) stored in the L1 layer of the VertexUpdateHashIn-

dex. For each vertex v in the GDB, there is a hash(v) stored in L2,

which links to exactly one hash in L1. Thus, ADD-SG, DEL-SG, and

MOD-SG require two operations on the VertexUpdateHashIndex.

The remaining three changes ADD-PE, DEL-PE, and MOD-PE re-

quire no updates on the vertex summaries vs , but require up to two

updates on the VertexUpdateHashIndex.

Payload Updates: All six changes possibly require an update to

the payload. As discussed above, different payloads are used to

implement different tasks. Thus, the number of updates depends



on what is stored as payload. For example, for data search, we

memorize the source label. The payload information (source label)

is stored in payload elements in the graph summary. Links to these

payload elements are stored in L3 of the VertexUpdateHashIndex.

In this example, we only update payload elements if a source label

changed. As mentioned above, this requires at most two updates

on the VertexUpdateHashIndex.

Summary: Any change in a GDB with maximum degree d re-

quires at most O(dk ) update operations on the graph summary,

when the equivalence relation ∼ is defined using a chaining param-

eter of k . Thus, the overall complexity of incrementally computing

and updating the graph summary with ∆ changes on the GDB is

bounded by O(n + ∆ · dk ), where the GDB has n vertices and maxi-

mum degree d , and the chaining parameter is k . From our analysis,

we see three predominant factors regarding the complexity of incre-

mentally updating structural graph summaries. First, the maximum

degree d in the GDB. Second, the chaining parameterization k , i. e.,
the maximum distance in the matched equivalent subgraphs. Third,

the number of summary vertices and the number of summary edges

in SG, i. e., the schema heterogeneity, since ADD-SG and DEL-SG

require in the best case to add/delete only one summary vertex and

one summary edge.

6 EXPERIMENTAL APPARATUS
We empirically evaluate the time and space requirements of the

presented graph summarization algorithms for different graph sum-

mary models. We run experiments on graph databases that evolve

over time, i. e., we observe different versions of the graph database at

different points in time. For each version of the graph database, we

analyze the cost of computing a new graph summary from scratch

(batch-based computation) compared to incrementally updating an

existing graph summary from a previous version.

We implemented our algorithm in Scala using Apache Spark

GraphX (single context with 20 cores and 200 GB heap space) and

store graph summaries in an OrientDB graph database (single DB

with 100 GB heap space and 20 GB memory mapped files). More

details are available online [3].

We chose representative summary models for our experiments,

namely SchemEX [18], Attribute Collection [6], and Type Collec-

tion [6]. Type Collection summarizes vertices that share the same

label. In our formal model, they are defined as the label parame-

terized object cluster OCtype (see Sect. 3.2). Attribute Collection

summarizes vertices that share the same labels of outgoing edges.

Thus, they are defined as property cluster PC . SchemEX is a combi-

nation of Type and Attribute Collection, i. e., two vertices have the

same label, have edges with the same label, and neighbors with the

same label. Thus, they are defined as CSE (OCtype, id,OCtype). As

payload, we store the source graph label or the number of summa-

rized vertices to implement data search and cardinality computation

as described in Sect. 1.

6.1 Datasets
We use two benchmark datasets (LUBM100 and BSBM) and two

variants of the real-world weekly crawled DyLDO dataset. The two

benchmark datasets are only suitable for the cardinality computa-

tion task since they have only one source graph.

LUBM100: The Lehigh University Benchmark (LUBM) generates

benchmark datasets containing people working at universities [12].

We use the Data Generator v1.7 to generate 10 versions of a graph

containing 100 universities. Thus, all versions are of similar size, but

we emulate modifications by generating different vertex identifiers,

i. e., each version is considered as timestamped graph. Each graph

contains about 2.1M vertices and 13M edges. Over all versions, the

avg. degree is 6.7 (standard deviation: σ < 0.1), the avg. in-degree

is 6.8 (σ < 0.1), and the avg. out-degree is 5.1 (σ < 0.1).

BSBM: The Berlin SPARQL Benchmark (BSBM) is a suite of bench-

marks built around an e-commerce use case [2]. We generate 21

versions of the dataset with different scale factors. The first dataset,

with a scale factor of 100, contains about 7, 000 vertices and 75, 000

edges. We generate versions with scale factors between 2, 000 and

40, 000 in steps of 2, 000. The largest dataset contains about 1.3M

vertices and 13M edges. For our experiments, we first use the dif-

ferent versions ordered by size from small to large (version 0 to 20)

to simulate a growing graph database. Subsequently, we reverse

the order to emulate a shrinking graph database. Over all versions,

the avg. degree is 8.1 (σ = 0.5), avg. in-degree is 4.6 (σ = 0.3), and

avg. out-degree is 9.8 (σ = 0.2).

DyLDO: The Dynamic Linked Data Observatory (DyLDO) pro-

vides regular crawls of the Web of Data [15]. The crawls started

from about 95, 000 representative seed URIs (source label of graphs).

There are two variants of this dataset: The dataset containing only

the graphs identified by the seed URIs is referred to as DyLDO-
core. It contains the 95, 000 different graphs obtained from the

seed URIs. The extended crawl (including the core) is referred to as

DyLDO-ext. Starting from the seed URIs, a breadth-first search is

conducted with a crawling depth of 2, i. e., recursively graphs are

added that are referenced from already crawled graphs.

For DyLDO-core, we use all 50 crawls conducted between Janu-

ary 20, 2019 and January 12, 2020. DyLDO-core contains 2.1–3.5 M

vertices and 7–13 M edges. Over all weekly crawls, the avg. degree

is 3.5 (σ = 0.2), avg. in-degree is 3.0 (σ = 0.2) and avg. out-degree

is 2.9 (σ = 0.2). Note that week 21 (June 16, 2019) is an anomaly as

DyLDO-core contains only eight edges due to a crawling failure.

Thus, we excluded weeks 21 and 22 from the results. For DyLDO-

ext, we use the first 5 crawls that contain 7–10M vertices and

84–106M edges. The avg. degree is 11.1 (σ = 0.6), avg. in-degree is

8.0 (σ = 0.5), and avg. out-degree is 10.7 (σ = 0.7).

6.2 Metrics
We employ different metrics to evaluate the size of the graph sum-

maries, the update complexity for the graph summaries, and the

runtime performance of the graph summary computation algo-

rithms. Regarding size, we count the number of vertices |V | and
edges |E | in GDB and the number of vertices |Vvs | and edges |Evs |

in the graph summaries. Furthermore, we denote by
|V |
|V /∼| the sum-

marization ratio, i. e., the fraction of the number of all vertices V in

the GDB and the number of different equivalence classes under the

equivalence relation ∼ in the graph summary SG. The summariza-

tion ratio describes howmany verticesv are on average summarized

by one vertex summary vs . Higher summarization ratios indicate a

low variety of schema structures. A ratio of 1 indicates that no two

vertices share the same schema structure.



The size of the VertexUpdateHashIndex is measured in bytes.

By design, the VertexUpdateHashIndex has an entry in L1 for each

primary vertex in SG, an entry in L2 for each vertex in the GDB,

and an entry in L3 for each payload element. Thus, comparing

the number of entries in VertexUpdateHashIndex to vertices and

edges in the GDB does not bring additional insights. The VertexUp-

dateHashIndex’s advantage is that the information is reduced to a

minimum. Thus, we determine the data overhead in terms of a com-

pression ratio by comparing the size of the VertexUpdateHashIndex

in bytes (serialized gzipped Java object) to the size of the GDB in

bytes (gzipped n-quads files). Regarding the update complexity,
we count the number of vertices with a changed schema (ADD-SG,

DEL-SG, and MOD-SG), i. e., the relevant changes in the GDB. Since

changed schemata require in the best case 0 updates and in the

worst case O(dk ) updates on the graph summary, we also count

the number of updates on the graph summary. Finally, the runtime

performance of the algorithms is measured by the time needed

to compute a summary from scratch or, in the incremental case,

updating the summary SG for each version of the GDB.

7 RESULTS
The experimental results are visualized in Fig. 3. Each plot shows

on the x-axis the database versions over time. From left to right,

the columns of Fig. 3 show the metrics size, update complexity,
and performance. From top to bottom, we show the results for

the LUBM100, BSBM, DyLDO-core, and DyLDO-ext datasets.
Unless specified otherwise, we refer in the text to average and

standard deviation values computed over all version of a GDB.

Comparing the size of the graph summaries (|Vvs |, |Evs |) and the
graph database (|V |, |E |) (Fig. 3 left column), the graph summaries

are orders of magnitude smaller (consistently over all experiments).

Also, the Type Collections (abbreviated TypeColl) and Attribute

Collections (abbreviated AttrColl) have higher summarization ra-

tios than SchemEX. This means, fewer vertex summaries are needed

to partition the GDB based on vertex labels or edge labels compared

to combining vertex and edge labels. Over all datasets, Attribute

Collections have the highest summarization ratios and have around

a factor of of 10
4
fewer vertices, followed by Type Collections

with a factor of 10
3
fewer vertices. SchemEX has the lowest sum-

marization ratio. Still, SchemEX has on the order of a factor of

10
2
fewer vertices than the GDB. Comparing the changes in GDB

and the updates on SG (Fig. 3 center column), we see that over all

datasets, the number of updates on the graph summary is magni-

tudes smaller than the number of changes in the graph database.

On average, there are 12, 000 more changes than updates for the

Type Collections, 20, 000 more for the Attribute Collection, and

650 more for SchemEX. Furthermore, the incremental algorithm

usually computes Type Collections the fastest (avg. 28min) and

SchemEX the slowest (avg. 46min) (Fig. 3 right column). In relation

to the batch counterpart, these numbers are a relative speed up of

1.8 (σ = 0.7) for SchemEX, 1.8 (σ = 0.9) for Attribute Collection,

and 3.7 (σ = 2.7) for Type Collection.

The plots in Fig. 3 (right column) show the better run time per-

formance of the incremental algorithm, which is achieved by main-

taining the VertexUpdateHashIndex, compared to the batch com-

putation. The compression ratio of the VertexUpdateHashIndex is

shown in Table 1. We observe huge variations in the compression

for each dataset ranging from 8% up to 64% of the GDB’s size.

8 DISCUSSION
In total, we have run 312 experiments, i. e., we haven = 312measure

points of our three graph summary models over all versions of our

four datasets (10× LUBM, 40× BSBM, 49×DyLDO-core, 5×DyLDO-

ext). The key insight from our experiments is that, over all summary

models and datasets, the incremental algorithm is almost always

faster than the batch counterpart. Furthermore, a more detailed

evaluation of the performance metrics shows a significant linear

correlation between the schema computation (phase 1) and the

number of edges in the graph database, r (311) = 0.945, p < .0001.
This substantiates our theoretical complexity analysis. As described

in Sect. 5, phase 1 is identical for both algorithms.

Regarding the overall runtime (phase 1 and 2), we observe that

the incremental algorithm outperforms the batch variant almost

always on the BSBM dataset, even though about 90% of the GDB

changes in each version. Even for the DyLDO-core dataset, when

about 46% of the GDB changes from version 46 to 47, the incremen-

tal algorithm is still 1.5 times faster. This can be explained by the

fact that changes in the GDB do not necessarily require an update

to the graph summary.

From our results, we can also state that graph summarization

on benchmark datasets is easier than on real-world datasets, i. e.,

there are fewer vertex summaries needed to summarize a similar-

sized graph database. This observation highlights the importance

of using real-word datasets when evaluating graph summarization

algorithms, as the observed variety of schema structures in the

DyLDO datasets is not covered by existing benchmark datasets.

Experiments on the BSBM dataset suggest that cascading updates

due to neighbor changes have a huge impact on the performance of

the incremental graph summarization algorithm. More than 99% of

all vertex modifications are due to a neighbor change. Of all vertex

changes, this makes up 83.88% (σ = 15.64%).

Compared to the other experiments, the performances of the

batch computations of Type Collections on the two DyLDO datasets

have a exceptional trends. The batch computation takes twice as

long for the Type Collection on the DyLDO-core than for the At-

tribute Collection and SchemEX. Further investigation revealed that

there a few “hot” vertex summaries that summarize most of the ver-

tices. During the find and merge phase, the payload information of

different vertices that are summarized by the same vertex summary

vs is merged (ADD-PE). Although merging payload information is

done in constant time (merging sets of source graph label), merging

basically all payload information into few payload elements cannot

Table 1: Relative size (in %) of the VertexUpdateHashIndex
compared to the graph database (compression).

Dataset SchemEX AttrColl TypeColl

LUBM100 40% (σ < 1%) 39% (σ < 1%) 39% (σ < 1%)

BSBM 08% (σ < 1%) 06% (σ < 1%) 06% (σ < 1%)

DyLDO-core 64% (σ < 9%) 62% (σ = 8%) 60% (σ < 8%)

DyLDO-ext 24% (σ < 5%) 23% (σ = 5%) 23% (σ < 3%)
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Figure 3: Results of the experimental evaluation of three summary models: SchemEX (blue), Attribute Collection (green), and
Type Collection (red). Each row is a different dataset and each column a different metric.

be done in parallel. For the incremental algorithm, this has no effect

since the payload information is updated in parallel in the Vertex-

UpdateHashIndex. For the VertexUpdateHashIndex, no additional

synchronization for updating L3 is needed. One might consider this

as a design flaw in the batch algorithm, which decides whether

the incremental algorithm outperforms the batch algorithm or vice

versa. However, first, there is no alternative to store the payload in-

formation in the graph summary since the batch algorithm requires

no additional data structure. Second, the source graph payload is

only used in the real-world datasets. For the benchmark datasets, no

additional synchronization due to payload merges is done during

the batch computation. Still, the incremental algorithm, with very

few exceptions, outperforms the batch counterpart.



The evaluation of the data overhead shows a significant linear

correlation between the VertexUpdateHashIndex size and the num-

ber of vertices in the graph database, r (311) = 0.952, p < .0001.
Thus, L2 of the VertexUpdateHashIndex dominates the overall size.

The sizes of the VertexUpdateHashIndex for the different sum-

mary models differ only marginally but noticeably. As shown in

Table 1, the VertexUpdateHashIndex for SchemEX is consistently

1–4% larger than for the other two.

The number of edges is not as important for the size of the Vertex-

UpdateHashIndex since edges are reflected by the vertex summaries.

In consequence, graph databases with few vertices and more edges

are compressed to a relatively lower size (BSBM, DyLDO-ext in Ta-

ble 1). In light of this data overhead, future extensions may be to

further compress L2 by using approximative data structures such as

Bloom filters [28]. However, as pointed out by Fan et al. [9], many

real-life applications require exact matches.

Overall, we evaluated more than 100 versions of four datasets

(two synthetic and two real-world) each with different character-

istics in terms of data change rates, types of changes, schema het-

erogeneity, size, and degree. Thus, we capture a wide range of

characteristics of datasets suitable for graph summarization. Fur-

thermore, we computed three representative summary models on

these datasets. The selected summarymodels are widely used across

different research areas, datasets, and tasks [7]. In addition, many

summary models use the schema structure of the three evaluated

summary models, though often under different names and some-

times in combination with further features [4].

We acknowledge that we did not re-evaluate the effectiveness of

the summary models for their specific tasks. However, the summary

models were evaluated by their respected authors. Our algorithm

does not change the summary models but allows an efficient compu-

tation of the original summary models for evolving graphs. Beyond

the specific graph summary models evaluated in this paper, our

parameterized incremental algorithm is suitable for any other sum-

mary model defined in our formal language [4]. Our framework,

the experimental apparatus, and the results are available on GitHub

under an open source license [3]. Thus, we encourage further ex-

periments using other models and datasets. For example, in our

analysis, we could not find a link between graph properties such

as degree, number of changes, size of the graph summary etc. that

would allow a reliable prediction of the performance of the incre-

mental graph summarization algorithm. Here, further experiments

with different models and datasets are required. However, our ex-

periments already show that for commonly used summary models,

the incremental algorithm almost always outperforms the batch

computation, even if about 50% of the data changes from version t
of a GDB to version t + 1.

9 CONCLUSION
We presented an incremental graph summarization algorithm for

structural graph summaries defined using equivalence relations.

We analyzed the complexity of our algorithm and empirically evalu-

ated time and space requirements for three graph summary models

on two benchmark and two real-world datasets. The incremen-

tal summarization algorithm almost always outperforms its batch

counterpart, even when about 50% of the graph database changes.
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